By Topic

A comparative review of real and complex Fourier-related transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
O. K. Ersoy ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA

Major continuous-time, discrete-time, and discrete Fourier-related transforms as well as Fourier-related series are discussed both with real and complex kernels. The complex Fourier transforms, Fourier series, cosine, sine, Hartley, Mellin, Laplace transforms, and z-transforms are covered on a comparative basis. Generalizations of the Fourier transform kernel lead to a number of novel transforms, in particular, special discrete cosine, discrete sine, and real discrete Fourier transforms, which have already found use in a number of applications. The fast algorithms for the real discrete Fourier transform provide a unified approach for the optimal fast computation of all discrete Fourier-related transforms. The short-time Fourier-related transforms are discussed for applications involving nonstationary signals. The one-dimensional transforms discussed are also extended to the two-dimensional transforms

Published in:

Proceedings of the IEEE  (Volume:82 ,  Issue: 3 )