By Topic

An architecture for high-performance/small-area multipliers for use in digital filtering applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwentus, A.Y. ; Dept. of Electr. Eng., California State Univ., Los Angeles, CA, USA ; Hing-Tsun Hung ; Willson, A.N., Jr.

A multiplier architecture and encoding scheme well suited for programmable digital filtering applications is described. The multiplier's partial product recoding scheme uses only simple multiplexers and takes advantage of a RAM that stores filter coefficients. We use an optimized 20-transistor full-adder cell in the carry-save adder array, and a carry-select vector-merge adder produces the final output. An integrated circuit comprising an ll-b by ll-b multiplier using second-order recoding has been fabricated in 2-μm CMOS technology. It operates in 22 ns and its core occupies 1.53 mm2. Also, an ll-b by 16-b multiplier using third-order recoding has been fabricated through MOSIS in 1.2-μm CMOS technology. Its core occupies 0.9 mm2 and it operates in 19 ns

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:29 ,  Issue: 2 )