By Topic

Modified Hopfield-Tank neural networks applied to the “Unitized” maximum flow problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Munakata, Toshinori ; Dept. of Comput. & Inf. Sci., Cleveland State Univ., OH, USA ; Takefuji, Y. ; Johansson, H.

Two new approaches called “graph unitization” are proposed to apply neural networks similar to the Hopfield-Tank models to determine optimal solutions for the maximum flow problem. They are: (1) n-vertex and n2-edge neurons on a unitized graph; (2) m-edge neurons on a unitized graph. Graph unitization is to make the flow capacity of every edge equal to 1 by placing additional vertices or edges between existing vertices. In our experiments, solutions converged most of the time, and the converged solutions were always optimal, rather than near optimal

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:41 ,  Issue: 2 )