By Topic

High-performance I/O for massively parallel computers: problems and prospects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
del Rosario, J.M. ; Dept. of Electr. & Comput. Eng., Syracuse Univ., NY, USA ; Choudhary, A.N.

Over the past two decades (1974-94), advances in semiconductor and integrated circuit technology have fuelled the drive toward faster, ever more efficient computational machines. Today, the most powerful supercomputers can perform computation at billions of floating-point operations per second (gigaflops). This increase in capability is intensifying the demand for even more powerful machines. Computational limits for the largest supercomputers are expected to exceed the teraflops barrier in the coming years. Discussion is given on the following areas: the nature of I/O in massive parallel processing; operating and file systems; runtime system and compilers; and networking technology. The recurrent themes in the parallel I/O problem are the existence of a great variety in access patterns and the sensitivity of current I/O systems to these access patterns. An increase in the variability of access patterns is also expected, and single resource-management approaches will likely not suffice. Providing the I/O infrastructure that will support these requirements will necessitate research in operating systems (parallel file systems, runtime systems, and drivers), language interfaces to high-performance storage systems, high-speed networking, graphics and visualization systems, and new hardware technology for I/O and storage systems.<>

Published in:

Computer  (Volume:27 ,  Issue: 3 )