By Topic

Optimal trellis-based buffered compression and fast approximations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ortega, A. ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Ramchandran, K. ; Vetterli, M.

The authors formalize the description of the buffer-constrained adaptive quantization problem. For a given set of admissible quantizers used to code a discrete nonstationary signal sequence in a buffer-constrained environment, they formulate the optimal solution. They also develop slightly suboptimal but much faster approximations. These solutions are valid for any globally minimum distortion criterion, which is additive over the individual elements of the sequence. As a first step, they define the problem as one of constrained, discrete optimization and establish its equivalence to some of the problems studied in the field of integer programming. Forward dynamic programming using the Viterbi algorithm is shown to provide a way of computing the optimal solution. Then, they provide a heuristic algorithm based on Lagrangian optimization using an operational rate-distortion framework that, with computing complexity reduced by an order of magnitude, approaches the optimally achievable performance. The algorithms can serve as a benchmark for assessing the performance of buffer control strategies and are useful for applications such as multimedia workstation displays, video encoding for CD-ROMs, and buffered JPEG coding environments, where processing delay is not a concern but decoding buffer size has to be minimized

Published in:

Image Processing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )