By Topic

A genetic algorithm for multiprocessor scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hou, E.S.H. ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Ansari, N. ; Hong Ren

The problem of multiprocessor scheduling can be stated as finding a schedule for a general task graph to be executed on a multiprocessor system so that the schedule length can be minimized. This scheduling problem is known to be NP-hard, and methods based on heuristic search have been proposed to obtain optimal and suboptimal solutions. Genetic algorithms have recently received much attention as a class of robust stochastic search algorithms for various optimization problems. In this paper, an efficient method based on genetic algorithms is developed to solve the multiprocessor scheduling problem. The representation of the search node is based on the order of the tasks being executed in each individual processor. The genetic operator proposed is based on the precedence relations between the tasks in the task graph. Simulation results comparing the proposed genetic algorithm, the list scheduling algorithm, and the optimal schedule using random task graphs, and a robot inverse dynamics computational task graph are presented

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 2 )