By Topic

Knowledge-based control of grasping in robot hands using heuristics from human motor skills

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bekey, George A. ; Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Liu, H. ; Tomovic, R. ; Karplus, Walter J.

The development of a grasp planner for multifingered robot hands is described. The planner is knowledge-based, selecting grasp postures by reasoning from symbolic information on target object geometry and the nature of the task. The ability of the planner to utilize task information is based on an attempt to mimic human grasping behavior. Several task attributes and a set of heuristics derived from observation of human motor skills are included in the system. The paper gives several examples of the reasoning of the system in selecting the appropriate grasp mode for spherical and cylindrical objects for different tasks

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:9 ,  Issue: 6 )