By Topic

A model-based system for the classification and analysis of materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. C. Capelo ; Istituto di Analisi Numerica del Consiglio Nazionale, Pavia Univ., Italy ; L. Ironi ; S. Tentoni

To build model-based systems capable of emulating the scientist's or engineer's way of reasoning about a given physical domain requires methods for automating the formulation or selection of a model which adequately captures the knowledge needed for solving a specific problem. To find and exploit such models requires the use and integration of different kinds of knowledge, formalisms and methods. This paper describes a system which aims at reasoning automatically about visco-elastic materials from a mechanical point of view. It integrates both domain-specific and domain-independent knowledge in order to classify and analyse the mechanical behaviour of materials. The classification task is based on qualitative knowledge, whereas the analysis of a material is performed at a quantitative level and is based on numerical simulation. The key ideas of the work are to automatically generate a library of models of ideal materials and their corresponding qualitative responses to standard experiments; to classify an actual material by selecting from within the library a class of models whose simulated qualitative behaviours towards standard loads match the observed behaviours; to identify a quantitative model of the material, and then to analyse the material by simulating its behaviour on any load. Each model in the library is automatically generated in two different forms; at the lowest level, as a symbolic description and, at a mathematical level, as an ordinary differential equation. This paper mainly concentrates on the methods and algorithms of model generation and qualitative simulation.<>

Published in:

Intelligent Systems Engineering  (Volume:2 ,  Issue: 3 )