Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Piezoelectric materials for acoustic wave applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gualtieri, J.G. ; US Army Res. Lab., Fort Monmouth, NJ, USA ; Kosinski, J.A. ; Ballato, A.

Piezoelectric materials for acoustic wave applications have changed markedly over the past 20 years in terms of both the types of materials available and the quality of individual samples. The total family of acoustic wave materials now includes piezoelectric glass-ceramics having crystallographic and polar orientation and crystals having symmetry classes mm2, 32, 3m, 4mm, 6mm, and 4/spl macr/3m. The symmetry classes 6mm and 4/spl macr/3m also occur frequently in piezoelectric semiconductor materials that are now available in both bulk and thin-film configurations. In this paper, we bring together and extract the various reported values of the material constants mainly of interest for surface acoustic wave (SAW) device applications. We identify for the user community those sets of constants from which SAW design calculations can reliably be made, and discuss the constants and their reliability for langasite, lithium niobate/lithium tantalate, and dilithium tetraborate. The relevant material constants include: mass density /spl rho/, elastic stiffness c/sub ij/, piezoelectric stress e/sub ij/, dielectric permittivity /spl epsiv//sub ii/, and the thermal expansion coefficients /spl alpha//sub ii/. Except for the semiconductor materials, only data published after 1978 are included, since the reference literature (Landolt-Bornstein) amply covers those years prior to 1978.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 1 )