Cart (Loading....) | Create Account
Close category search window

Ultrasonic nondestructive evaluation of highly scattering materials using adaptive filtering and detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong Zhu ; Dept. of Electr. Electron. & Inf. Eng., City Univ., London, UK ; Weight, J.P.

Adaptive filtering and detection has been applied to the problem of detecting ultrasonic echo signals from test targets where the wanted signals are masked by coherent scattering from grain boundaries present in highly scattering materials. The filter is based on the normalized least mean square (LMS) error algorithm, and can be operated with either an independent reference signal or by using the delayed input signal as the reference. Tests made on a collection of 64 ultrasonic A-scans using the same processing parameters show that an up to 10 dB improvement in signal-to-noise ratio can typically be obtained. A cell-averaging constant false alarm rate (CFAR) detector is used to detect the signals automatically. The performance of the method is compared to that of split spectrum processing, both with and without polarity thresholding.<>

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:41 ,  Issue: 1 )

Date of Publication:

Jan. 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.