By Topic

Fast restoration of ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Anderson ; AT&T Bell Labs., Holmdel, NJ, USA ; B. T. Doshi ; S. Dravida ; P. Harshavardhana

Asynchronous transfer mode (ATM) is now well recognized as the fundamental switching and multiplexing technique for future broadband ISDN. As these networks will be increasingly relied upon for providing a multitude of integrated voice, data, and video services, network reliability is a key concern. There are several intrinsic features of ATM networks that could potentially be exploited to provide improved restoration techniques, beyond those established for synchronous transfer mode (STM) networks, such as digital cross-connect restoration or self-healing rings. These features include ATM cell level error detection, inherent rate adaptation and nonhierarchical multiplexing. The authors explore the use of these features in developing fast restoration strategies for ATM networks. In particular, they address: (1) ATM error detection capabilities for enhanced failure detection, (2) network rerouting strategies, (3) spare capacity allocation, and (4) network control architecture and related implementation aspects. Their findings suggest that fast network span failure detection and bandwidth-efficient rerouting capabilities can be combined to develop restoration strategies for ATM networks with significantly greater performance-cost ratios when compared to existing STM network restoration strategies

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:12 ,  Issue: 1 )