By Topic

Comparison of different order cumulants in a speech enhancement system by adaptive Wiener filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. M. Salavedra ; Dept. of Signal Theory & Commun. Univ. Politecnica de Catalunya, Barcelona, Spain ; E. Masgrau ; A. Moreno ; X. Jove

The authors study some speech enhancement algorithms based on the iterative Wiener filtering method due to Lim and Oppenheim (1978), where the AR spectral estimation of the speech is carried out using a second-order analysis. But in their algorithms the authors consider an AR estimation by means of a cumulant (third- and fourth-order) analysis. The authors provide a behavior comparison between the cumulant algorithms and the classical autocorrelation one. Some results are presented considering the noise (additive white Gaussian noises) that allows the best improvement and those noises (diesel engine and reactor noise) that leads to the worst one. And exhaustive empirical test shows that cumulant algorithms outperform the original autocorrelation algorithm, specially at low SNR.

Published in:

Higher-Order Statistics, 1993., IEEE Signal Processing Workshop on

Date of Conference: