Cart (Loading....) | Create Account
Close category search window

Reaching approximate agreement with mixed-mode faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kieckhafer, R.M. ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Azadmanesh, M.H.

In a fault-tolerant distributed system, different non-faulty processes may arrive at different values for a given system parameter. To resolve this disagreement, processes must exchange and vote upon their respective local values. Faulty processes may attempt to inhibit agreement by acting in a malicious or “Byzantine” manner. Approximate agreement defines one form of agreement in which the voted values obtained by the non-faulty processes need not be identical. Instead, they need only agree to within a predefined tolerance. Approximate agreement can be achieved by a sequence of convergent voting rounds, in which the range of values held by non-faulty processes is reduced in each round. Historically, each new convergent voting algorithm has been accompanied by ad-hoc proofs of its convergence rate and fault-tolerance, using an overly conservative fault model in which all faults exhibit worst-case Byzantine behavior. This paper presents a general method to quickly determine convergence rate and fault-tolerance for any member of a broad family of convergent voting algorithms. This method is developed under a realistic mixed-mode fault model comprised of asymmetric, symmetric, and benign fault modes. These results are employed to more accurately analyze the properties of several existing voting algorithms, to derive a sub-family of optimal mixed-mode voting algorithms, and to quickly determine the properties of proposed new voting algorithms

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.