By Topic

Bit-serial CORDIC DFT computation with multidimensional systolic processor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jones, K.J. ; GEC-Marconi Sonar, Templecombe, UK

It is shown how two square arrays, each comprising square root N* square root N CORDIC (Coordinate Rotation Digital Computer) processing elements (PEs), can be used to carry out an efficient two-dimensional (2-D) implementation of the N-point discrete Fourier transform (DFT), with O( square root N) time-complexity, producing N DFT coefficients every square root N time-steps, with fully systolic operation. Generalization to a multidimensional (m-D) solution is also discussed. The CORDIC PE is implemented in bit-serial form, being thus extremely efficient, in terms of speed/area product, and possessing simple interconnects. These characteristics facilitate the mapping of potentially thousands of such units, and hence of entire medium/large DFT modules, onto a single chip, when implemented with very-large-scale-integration (VLSI) or wafer-scale-integration (WSI) technologies.<>

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:18 ,  Issue: 4 )