By Topic

A combinatorial algorithm for performance and reliability analysis using multistate models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Veeraraghavan ; AT&T Bell Labs., Holmdel, NJ, USA ; K. S. Trivedi

The need for the combined performance and reliability analysis of fault tolerant systems is increasing. The common approach to formulating and solving such problems is to use (semi-)Markov reward models. However, the large size of state spaces is a problem that plagues Markovian models. Combinatorial models have been used for modeling reliability and availability of complex systems without paying the price of large Markov models. However, assumptions of two-state behavior of components (and that of the system), independence assumptions of component state transitions, and restrictive repair assumptions decrease the potential of combinatorial models for realistic systems. The authors propose a combinatorial algorithm for the combined performance and reliability analysis of coherent repairable systems with multistate components, allowing interdependent component state transitions. An example illustrating the algorithm is also presented

Published in:

IEEE Transactions on Computers  (Volume:43 ,  Issue: 2 )