By Topic

Frequency-hopping code sequence designs having large linear span

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kumar, P.V. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA

In frequency-hopping spread-spectrum multiple-access communication systems, it is desirable to use sets of hopping patterns that, in addition to having good Hamming correlation properties and large period, are also derived from sequences having large linear span. Here, two such frequency hopping code sequence designs that are based on generalized bent functions and generalized bent sequences are presented. The Hamming correlation properties of the designs are optimal in the first case and close to optimal in the second. In terms of the alphabet size p (required to be prime in both cases), the period and family size of the two designs are given by (p2, p) and (p n, pn/2+1) (n an even integer), respectively. The finite field sequences underlying the patterns in the first design have linear span exceeding p, whereas still larger linear spans (when compared to the sequence period) can be obtained using the second design method

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 1 )