By Topic

Power generation scheduling for multi-area hydro-thermal systems with tie line constraints, cascaded reservoirs and uncertain data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, C. ; Dept. of Electr. & Comput. Eng.,, Illinois Inst. of Technol., Chicago, IL, USA ; Shahidehpour, S.M.

The authors propose an approach to the short-term generation scheduling of hydro-thermal power systems (GSHT). The objective of GSHT is to minimize the total operation cost of thermal units over the scheduling time horizon. To solve the problem within a reasonable time, the problem is decomposed into thermal and hydro subproblems. The coordinator between these subproblems is the system Lagrange multiplier. For the thermal subproblem, in a multi-area power pool, it is necessary to coordinate the area generations for reducing the operation cost without violating tie limits. A probabilistic method is employed in considering load forecasting errors and forced outages of generating units to satisfy system reliability requirements. For the hydro subsystem, network flow concepts are adopted to coordinate water use over the entire study time span and the reduced gradient method is used to overcome the linear characteristic of the network flow method to obtain the optimal solution. Three case studies for the proposed method are presented

Published in:

Power Systems, IEEE Transactions on  (Volume:8 ,  Issue: 3 )