By Topic

Application of static VAr compensators to increase power system damping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
E. -Z. Zhou ; Dept. of Electr. Eng., Saskatchewan Univ., Saskatoon, Sask., Canada

A theory for analyzing power system damping enhancement by application of static VAr compensators (SVCs) has been developed using the equal area criterion. Some fundamental issues, such as the effect of SVCs on a power system, how to control an SVC to improve system damping, and the differences between continuous and discontinuous control of SVC reactive power to achieve the maximum damping improvement, are discussed. A discontinuous SVC reactive power output at discrete points is determined from the power deviation on a transmission line. Time-domain simulations of the application of this approach to a one-machine system to increase swing oscillation damping and to a four-machine system to increase the damping of an interarea oscillation mode demonstrate that the theory and method can be applied to solve practical power system damping problems

Published in:

IEEE Transactions on Power Systems  (Volume:8 ,  Issue: 2 )