By Topic

A fuzzy-based optimal reactive power control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdul-Rahman, K.H. ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Shahidehpour, S.M.

A mathematical formulation of the optimal reactive power control problem using fuzzy set theory is presented. The objectives are to minimize real power losses and improve the voltage profile of a given system. Transmission losses are expressed in terms of voltage increments by relating the control variables to the voltage increments in a modified Jacobian matrix. This formulation does not require Jacobian matrix inversion, and hence it will save computation time and memory space. The objective function and the constraints are modeled by fuzzy sets. Linear membership functions of the fuzzy sets are defined and the fuzzy linear optimization problem is formulated. The solution space is defined as the intersection of the fuzzy sets describing the constraints and the objective functions. Each solution is characterized by a parameter that determines the degree of satisfaction with the solution. The optimal solution is the one with the maximum value for the satisfaction parameter. Results for test systems reveal the advantages of the approach

Published in:

Power Systems, IEEE Transactions on  (Volume:8 ,  Issue: 2 )