By Topic

Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Omura, Y. ; NTT LSI Labs., Atsugi, Japan ; Horiguchi, S. ; Tabe, M. ; Kishi, K.

A theoretical description is given of the dependence of the threshold voltage, V/sub TH/, of SOI MOSFETs on a wide range to top silicon layer thickness, t/sub s/, using both classical and quantum-mechanical methods. The quantum-mechanical effects become remarkable below the critical thickness and raise V/sub TH/ with decreasing t/sub s/. The classical method cannot be applied in such a thin t/sub s/ region, since classically obtained V/sub TH/ decreases monotonously with decreasing t/sub s/ even below the critical thickness. As a result, the V/sub TH/ curve as a function of t/sub s/ can be divided into two regions with a boundary at a critical t/sub s/, and the classical method can be applied above that critical thickness.<>

Published in:

Electron Device Letters, IEEE  (Volume:14 ,  Issue: 12 )