Cart (Loading....) | Create Account
Close category search window
 

A performance analysis of trellis-coded modulation schemes over Rician fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tellambura, C. ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada ; Qiang Wang ; Bhargava, V.K.

This paper presents a saddle point approximation (SAP) method to compute the pairwise error probability (PEP) of trellis-coded modulation (TCM) schemes over Rician fading channels. The approximation is applicable under several conditions, such as finite and ideal interleaving, ideal coherent and pilot-tone aided detection, and differential detection. The accuracy of this approximation is demonstrated by comparison to the results of numerical integration. When ideal interleaving is assumed, an asymptotic approximation for the PEP of ideal coherent, pilot-tone aided or differentially detected TCM is derived. This asymptotic approximation of the PEP is in a product form and much tighter than the ordinary Chernoff bound on the PEP. Also, based on the SAP, the effect of finite interleaving depth on the error performance of TCM schemes over Rician and shadowed Rician channels is studied

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

Nov 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.