By Topic

Yield-driven electromagnetic optimization via multilevel multidimensional models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bandler, J.W. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Biernacki, R.M. ; Shao Hua Chen ; Grobelny, P.A.
more authors

The authors present the foundation of a sophisticated hierarchical multidimensional response surface modeling system for efficient yield-driven design. The scheme dynamically integrates models and database updating in real optimization time. The method facilitates a seamless, smart, optimization-ready interface. It has been specially designed to handle circuits containing complex subcircuits or components whose simulation requires significant computational effort. This approach makes it possible, for the first time, to perform direct gradient-based yield optimization of circuits with components or subcircuits simulated by an electromagnetic simulator. The efficiency and accuracy of the technique are demonstrated by yield optimization of a three-stage microstrip transformer and a small-signal microwave amplifier. The authors also perform yield sensitivity analysis for the three-stage microstrip transformer

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 12 )