Cart (Loading....) | Create Account
Close category search window
 

An evaluation of local improvement operators for genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miller, J.A. ; Dept. of Comput. Sci., Georgia Univ., Athens, GA, USA ; Potter, W.D. ; Gandham, R.V. ; Lapena, C.N.

Genetic algorithms have demonstrated considerable success in providing good solutions to many NP-hard optimization problems. For such problems, exact algorithms that always find an optimal solution are only useful for small toy problems, so heuristic algorithms such as the genetic algorithm must be used in practice. In this paper, we apply the genetic algorithm to the NP-hard problem of multiple fault diagnosis (MFD). We compare a pure genetic algorithm with several variants that include local improvement operators. These operators, which are often domain-specific, are used to accelerate the genetic algorithm in converging on optimal solutions. Our empirical results indicate that by using the appropriate local improvement operator, the genetic algorithm is able to find an optimal solution in all but a tiny fraction of the cases and at a speed orders of magnitude faster than exact algorithms

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:23 ,  Issue: 5 )

Date of Publication:

Sep/Oct 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.