By Topic

Temperature dependence of gate induced drain leakage current in silicon CMOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rais, K. ; Lab. de Phys. des Composants a Semicond., ENSERG, Grenoble ; Balestra, F. ; Ghibaudo, G.

The temperature dependence of the gate induced drain leakage (GIDL) current in CMOS devices is investigated from 20K up to 300K. It is shown that, at sufficiently high electric field, the conventional band-to-band tunnelling GIDL current law is applicable down to near-liquid helium temperatures for both nand p-channel devices. The exponential factor B of the GIDL current law is found to be nearly independent of temperature. Moreover, the decrease of the GIDL current as the temperature is lowered, is shown to originate from the temperature variation of the pre-exponential coefficient A of the GIDL current law

Published in:

Electronics Letters  (Volume:30 ,  Issue: 1 )