Cart (Loading....) | Create Account
Close category search window
 

On the computation of the performance probabilities for block codes with a bounded-distance decoding rule

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dur, A. ; Dept. of Math., Innsbruck Univ., Austria

When a block code is used on a discrete memoryless channel with an incomplete decoding rule that is based on a generalized distance, the probability of decoding failure, the probability of erroneous decoding, and the expected number of symbol decoding errors can be expressed in terms of the generalized weight enumerator polynomials of the code. For the symmetric erasure channel, numerically stable methods to compute these probabilities or expectations are proposed for binary codes whose distance distributions are known, and for linear maximum distance separable (MDS) codes. The method for linear MDS codes saves the computation of the weight distribution and yields upper bounds for the probability of erroneous decoding and for the symbol error rate by the cumulative binomial distribution. Numerical examples include a triple-error-correcting Bose-Chaudhuri-Hocquenghem (BCH) code of length 63 and a Reed-Solomon code of length 1023 and minimum distance 31

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 1 )

Date of Publication:

Jan 1988

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.