By Topic

Analysis of field oriented control for permanent magnet hysteresis synchronous motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qian, J. ; Siemens Electr. Ltd., Brampton, Ont., Canada ; Azizur Rahman, M.

A microprocessor implementation of the field-oriented control scheme for the permanent magnet (PM) hysteresis synchronous motor is reported. The basic principle is to decouple the torque-current component from the flux-current component so that these two components can be independently controlled. A d-q axis model of the PM hysteresis synchronous motor is presented, and the field-oriented control obtained from the basic machine model. A control scheme that decouples the stator current components and orients it to the rotor frame is described. A scheme for detecting the rotor position is proposed. A software package based on the Intel 8086 microprocessor has been developed. A sine PWM voltage source inverter is used in the experimental work. The test results validate the theoretical steady state and dynamic performances of the laboratory prototype motor

Published in:

Industry Applications, IEEE Transactions on  (Volume:29 ,  Issue: 6 )