By Topic

An efficient differential box-counting approach to compute fractal dimension of image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarkar, N. ; Electron. & Commun. Sci. Unit, Indian Stat. Inst., Calcutta, India ; Chaudhuri, B.B.

Fractal dimension is an interesting feature proposed to characterize roughness and self-similarity in a picture. This feature has been used in texture segmentation and classification, shape analysis and other problems. An efficient differential box-counting approach to estimate fractal dimension is proposed in this note. By comparison with four other methods, it has been shown that the authors, method is both efficient and accurate. Practical results on artificial and natural textured images are presented

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )