By Topic

An evidential reasoning approach for multiple-attribute decision making with uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Bo Yang ; Eng. Design Centre, Newcastle upon Tyne Univ., UK ; Singh Madan, G.

A new evidential reasoning based approach is proposed that may be used to deal with uncertain decision knowledge in multiple-attribute decision making (MADM) problems with both quantitative and qualitative attributes. This approach is based on an evaluation analysis model and the evidence combination rule of the Dempster-Shafer theory. It is akin to a preference modeling approach, comprising an evidential reasoning framework for evaluation and quantification of qualitative attributes. Two operational algorithms have been developed within this approach for combining multiple uncertain subjective judgments. Based on this approach and a traditional MADM method, a decision making procedure is proposed to rank alternatives in MADM problems with uncertainty. A numerical example is discussed to demonstrate the implementation of the proposed approach. A multiple-attribute motor cycle evaluation problem is then presented to illustrate the hybrid decision making procedure

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:24 ,  Issue: 1 )