By Topic

Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Han, Y.S. ; Sch. of Comput. & Inf. Sci., Syracuse Univ., NY, USA ; Hartmann, C.R.P. ; Chih-Chieh Chen

The authors present a novel and efficient maximum-likelihood soft-decision decoding algorithm for linear block codes. The approach used here converts the decoding problem into a search problem through a graph that is a trellis for an equivalent code of the transmitted code. A generalized Dijkstra's algorithm, which uses a priority-first search strategy, is employed to search through this graph. This search is guided by an evaluation function f defined to take advantage of the information provided by the received vector and the inherent properties of the transmitted code. This function f is used to reduce drastically the search space and to make the decoding efforts of this decoding algorithm adaptable to the noise level. For example, for most real channels of the 35 000 samples tried, simulation results for the (128,64) binary extended BCH code show that the proposed decoding algorithm is fifteen orders of magnitude more efficient in time and in space than that proposed by Wolf (1978). Simulation results for the (104, 52) binary extended quadratic residue code are also given

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 5 )