By Topic

Performance of modulation-doped charge-coupled devices (MD-CCD's) in the microwave and millimeter-wave bands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
La Rue, R.A. ; EO Sensors Div., INTEVAC, Palo Alto, CA, USA ; Colbeth, R.E. ; Davis, G.A. ; Yuen, C.
more authors

A two-phase, modulation-doped charge coupled device (MD-CCD) has been characterized by both phase shift and charge transfer efficiency (CTE) measurements from 1.25 MHz to 16.4 GHz. Both two-dimensional transient simulations and experimental evidence support the conclusion that the cutoff frequency for transport of discrete charge packets emulates the cutoff frequency of small signal HEMT devices in the short gate length regime. These simulations predict a CTE of almost 0.999 at 40 GHz for an In0.53Ga0.47As channel device. The device is fabricated using conventional MMIC processing techniques. In addition, measurement methods used for characterization of a prototype 5-stage delay line chip agree well with simulations using a new CCD SPICE model

Published in:

Electron Devices, IEEE Transactions on  (Volume:41 ,  Issue: 1 )