By Topic

A process algebraic approach to the specification and analysis of resource-bound real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Lee ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; P. Bremond-Gregoire ; R. Gerber

Recently, significant progress has been made in the development of timed process algebras for the specification and analysis of real-time systems. This paper describes a timed process algebra called ACSR, which supports synchronous timed actions and asynchronous instantaneous events. Timed actions are used to represent the usage of resources and to model the passage of time. Events are used to capture synchronization between processes. To be able to specify real systems accurately, ACSR supports a notion of priority that can be used to arbitrate among timed actions competing for the use of resources and among events that are ready for synchronization. The paper also includes a brief overview of other timed process algebras and discusses similarities and differences between them and ACSR

Published in:

Proceedings of the IEEE  (Volume:82 ,  Issue: 1 )