Cart (Loading....) | Create Account
Close category search window

Low delay FIR filter banks: design and evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nayebi, K. ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Barnwell, T.P., III ; Smith, M.J.T.

The subject of this paper is the design of low and minimum delay, exact reconstruction analysis-synthesis systems based on filter banks. It presents a time domain approach to the problem of designing FIR filter banks with adjustable reconstruction delays. It is shown that using a time domain formulation for the analysis-synthesis systems, the system delay can be considered to be relatively independent of the length of the analysis and synthesis filters. After a summary of the time domain analysis and design framework, the design of low and minimum delay systems is considered in detail. Several design examples are provided in the paper to demonstrate the performance of the design algorithm

Published in:

Signal Processing, IEEE Transactions on  (Volume:42 ,  Issue: 1 )

Date of Publication:

Jan 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.