By Topic

A soliton ring network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. R. Sauer ; Center for Optoelectron. Comput. Syst., Colorado Univ., Boulder, CO, USA ; M. N. Islam ; S. P. Dijaili

The recent demonstration of ultrafast, cascadable, all-optical soliton gates, although with long latency and at an early stage of research, opens the possibility of niche exploitation in architectures whose performance is primarily limited by the absence of a few such logic elements. A candidate system is a widely distributed, self-routing short packet, slotted ring system running at peak rates well beyond that of the conventional electronic hosts at each access node. The authors describe an architecture for a system with a 1.25 GHz packet rate, 32-bit payload, and 100 Gb/s peak bit rate serving a few hundred user nodes. An optical format is retained by through-going node traffic, so that the overhead of conversion to/from electronics is incurred only at the source and destination. This design effort has served to sharpen their understanding of the strengths and weaknesses of using such gates in carefully chosen applications

Published in:

Journal of Lightwave Technology  (Volume:11 ,  Issue: 12 )