By Topic

A probabilistic approach to fault diagnosis in linear lightwave networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. H. Deng ; Nat. Univ. of Singapore, Singapore ; A. A. Lazar ; W. Wang

The application of probabilistic reasoning to fault diagnosis in linear lightwave networks (LLNs) is investigated. The LLN inference model is represented by a Bayesian network (or causal network). An inference algorithm is proposed that is capable of conducting fault diagnosis (inference) with incomplete evidence and on an interactive basis. Two belief updating algorithms are presented which are used by the inference algorithm for performing fault diagnosis. The first belief updating algorithm is a simplified version of the one proposed by Pearl (1988) for singly connected inference models. The second belief updating algorithm applies to multiply connected inference models and is more general than the first. The authors also introduce a t-fault diagnosis system and an adaptive diagnosis system to further reduce the computational complexity of the fault diagnosis process

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:11 ,  Issue: 9 )