By Topic

A high speed GaAs error-detection circuit for fiber-optic transmission systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. P. Singh ; ITT Gallium Arsenide Technol. Center, Roanoke, VA, USA ; R. A. Sadler ; J. F. Naber ; B. O. Johannessen

A high-speed GaAs IC for detection of line code vibrations is described. This 144-gate error-detection circuit for monitoring a high-bit-rate fiber-optic link has been designed and fabricated using a high-yield titanium tungsten nitride self-aligned gate MESFET process. This process routinely provides a wafer-averaged gate delay (fan-in=fan-out=2) of less than 70 ps with a power dissipation of 0.5 mW/gate. The error-detection circuits were tested on-wafer using high-frequency probe cards at a clock rate of 1.4 GHz, with a yield of 64%. Packaged circuits worked at a clock frequency of over 2.5 GHz and consumed 200-mW power at a fixed power supply voltage of 1.5 V. The circuits operate over a wide variation in power supply voltage and temperature. When operated at a package temperature of 125°C, the circuits show less than a 12% degradation in their maximum clock frequency. The circuit was inserted into a 565-Mb/s system currently using a silicon ECL part, and full functionality was verified with no necessary modifications

Published in:

IEEE Transactions on Electron Devices  (Volume:35 ,  Issue: 9 )