Cart (Loading....) | Create Account
Close category search window
 

Receiver autonomous integrity monitoring (RAIM) capability for sole-means GPS navigation in the oceanic phase of flight

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lee, Y.C. ; Mitre Corp., McLean, VA, USA

Receiver autonomous integrity monitoring (RAIM), a GPS integrity monitoring scheme that uses redundant ranging signals to detect a satellite malfunction that results in a large range error, involves two functions: detection of the presence of a malfunctioning satellite and identification of which satellite (or satellites) is malfunctioning. An analysis is presented of GPS RAIM capability for sole-means navigation in the oceanic phase of flight, where the position protection limit requirement for the integrity function is not as stringent as for nonprecision approaches, and yet both detection and identification function may be required if GPS is to be used as a sole-means system. For this purpose, a detection and identification algorithm is developed which takes advantage of the fact that for the oceanic phase of flight, a much larger position error is acceptable than for the nonprecision approach phase of flight. The performance of this algorithm and an algorithm proposed previously by others is estimated via simulation and compared. On the basis of the results, recommendations are made on how RAIM may be used if GPS is to be coupled with an inertial system to provide a sole-means capability in the oceanic phase of flight.<>

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:7 ,  Issue: 5 )

Date of Publication:

May 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.