By Topic

Railgun using plasma initiation separated from the projectile

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. Katsuki ; Dept. of Electr. Eng. & Comput. Sci., Kumamoto Univ., Japan ; H. Akiyama ; T. Yamada ; N. Eguchi
more authors

Preacceleration of a projectile is important for reducing the erosion of the bore surface in a railgun. Gas guns, electrothermal guns, and other railguns are commonly used to preaccelerate the projectile. A new method, called the plasma initiation separated from the projectile (PISP) method is proposed, and its effectiveness is confirmed experimentally. A thin copper wire is placed near the edge of the railgun, and it explodes and forms a plasma that has a fast flow velocity due to the Lorentz force. This fast flowing plasma collides with the projectile, which obtains an initial velocity mainly by the momentum transfer. Since the current increases while only the plasma is accelerated, the driving force of the projectile just after the collision of the plasma with the projectile is large. The PISP method works as an inductive energy storage circuit with an opening switch

Published in:

IEEE Transactions on Plasma Science  (Volume:21 ,  Issue: 6 )