By Topic

Statistical information and discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Osterreicher, F. ; Math. Inst., Salzburg Univ., Austria ; Vajda, I.

In analogy with the definition of Shannon information, M.H. De Groot (1962) defined statistical information as the difference between prior and posterior risk of a statistical decision problem. Relations are studied between the statistical information and the discrimination functions of information theory known as f-divergences. Using previous results, it is shown that every f-divergence If(P,Q) is an average statistical information or decision problem with dichotomic parameter, 0-1 loss function, and corresponding observation distributions P and Q. The average is taken over a distribution on the parameter's prior probability. This distribution is uniquely determined by the function f. The main result is that every f-divergence is statistical information in some properly chosen statistical decision problem, and conversely, that every piece of statistical information is an f-divergence. This provides a new representation of discrimination functions figuring in signal detection, data compression, coding pattern classification, cluster analysis, etc

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 3 )