By Topic

A structured fixed-rate vector quantizer derived from a variable-length scalar quantizer. II. Vector sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Loroia, R. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Farvardin, N.

For Pt.I see ibid., vol.39, no.3, p.851-67 (1993). The fixed-rate scalar-vector quantizer (SVQ) for quantizing stationary memoryless sources is extended to a specific type of vector source in which each component is a stationary memoryless scalar subsource independent of the other components. Algorithms for the design and implementation of the original SVQ are modified to apply to this case. The resulting SVQ, referred to as the extended SVQ (ESVQ), is then used to quantize stationary sources with memory (with known autocorrelation function). Numerical results are presented for the quantization of first-order Gauss-Markov sources using this scheme. It is shown that the ESVQ-based scheme performs very close to entropy-coded transform quantization while maintaining a fixed-rate output and outperforms the fixed-rate scheme that uses scalar Lloyd-Max quantization of the transform coefficients. It is also shown that this scheme performs better than implementable vector quantizers, especially at high rates

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 3 )