Cart (Loading....) | Create Account
Close category search window

A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
de Munck, J.C. ; Netherlands Inst. for Sea Res., Texel, Netherlands

A method is presented to compute the potential distribution on the surface of a homogeneous isolated conductor of arbitrary shape. The method is based on an approximation of a boundary integral equation as a set of linear algebraic equations. The potential is described as a piecewise linear or quadratic function. The matrix elements of the discretized equation are expressed as analytical formulas.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 9 )

Date of Publication:

Sept. 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.