By Topic

Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Struijk, J.J. ; Dept. of Electr. Eng., Twente Univ., Enschede, Netherlands ; Holsheimer, J. ; van der Heide, G.G. ; Boom, H.B.K.

An electrical network model of myelinated dorsal column nerve fibers is presented. The effect of electrical simulation was investigated using both a homogeneous volume conductor and a more realistic model of the spinal cord. An important feature of dorsal column nerve fibers is the presence of myelinated collaterals perpendicular to the rostro-caudal fibers. It was found that transmembrane potentials, due to external monopolar stimulation, at the node at which a collateral is attached, is significantly influenced by the presence of the collateral. It is concluded that both excitation threshold and blocking threshold of dorsal column fibers are decreased up to 50% compared to unbranched fibers.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 9 )