By Topic

Convergence analysis for inexact mechanization of Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guanrong Chen ; Dept. of Electr. Eng., Houston Univ., TX, USA

A computational aspect of real-time estimation is considered, in which the estimation algorithm to be used has the standard optimal Kalman filtering structure, but the actual inverse matrix within the Kalman gain is replaced by an expedient approximation at each instant. In real-time applications, most Kalman filtering schemes are approximate to a degree as a consequence of numerical roundoff matrix inversion. The convergence properties and error estimates of such schemes are obtained to provide a theoretical basis for gauging the utility of using the above approximations of the Kalman gain matrix at each time instant. A new exponentially convergent scheme is also suggested for approximating the inverse matrix within the Kalman gain. Conditions are determined under which online approximate matrix inversion can be eliminated as the cause of Kalman filter divergence in real-time implementations

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:28 ,  Issue: 3 )