Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Semiconductor laser amplifier as optical switching gate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ehrhardt, Armin ; Heinrich-Herta-Inst. fuer Nachrichtentech. Berlin GmbH, Germany ; Eiselt, M. ; Grossopf, G. ; Kuller, L.
more authors

The properties of a semiconductor laser amplifier as optical switching gate are investigated. Particular attention is paid to gain, contrast ratio, and switching time of the device. These properties are studied experimentally and theoretically with respect to the injection current, optical input power, and cavity resonances. The experimental arrangements and the theoretical method are described. As an example of the various applications of semiconductor laser amplifier gates, packet switching experiments with self-routing, employing cascaded switching gates, are reported. In a theoretical analysis the restrictions that the properties of semiconductor laser amplifier gates impose on a larger switching system consisting of many such gates are investigated

Published in:

Lightwave Technology, Journal of  (Volume:11 ,  Issue: 8 )