By Topic

Local surface shape estimation of 3-D textured surfaces using Gaussian Markov random fields and stereo windows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patel, M.A.S. ; Dept. of Radiol., Minnesota Univ., Minneapolis, MN, USA ; Cohen, F.S.

The problem of extracting the local shape information of a 3-D texture surface from a single 2-D image by tracking the perceived systematic deformations the texture undergoes by virtue of being present on a 3-D surface and by virtue of being imaged is examined. The surfaces of interest are planar and developable surfaces. The textured objects are viewed as originating by laying a rubber planar sheet with a homogeneous parent texture on it onto the objects. The homogeneous planar parent texture is modeled by a stationary Gaussian Markov random field (GMRF). A probability distribution function for the texture data obtained by projecting the planar parent texture under a linear camera model is derived, which is an explicit function of the parent GMRF parameters, the surface shape parameters. and the camera geometry. The surface shape parameter estimation is posed as a maximum likelihood estimation problem. A stereo-windows concept is introduced to obtain a unique and consistent parent texture from the image data that, under appropriate transformations, yields the observed texture in the image. The theory is substantiated by experiments on synthesized as well as real images of textured surfaces

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 10 )