By Topic

Neural networks for segmentation and clustering of biomagnetical signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

When measuring biomagnetic signals the amount of data required is very large due to modern multichannel sensor arrays. Using the example of the magnetocardiogram (MCG), the authors show how these data can be automatically segmented and clustered with the help of neural algorithms. Self-organizing maps are not suitable for this application due to the character of the measured data. The data are compressed with the help of a special neural network. A very fast learning algorithm is used in the training phase, requiring substantially less computing power than conventional methods. Combined with a hierarchical cluster algorithm, a recognition rate of 100% of extrasystoles in MCG data was achieved

Published in:

Neural Networks for Signal Processing [1992] II., Proceedings of the 1992 IEEE-SP Workshop

Date of Conference:

31 Aug-2 Sep 1992