By Topic

Artificial neural network for ECG arryhthmia monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hu, Y.-H. ; Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI, USA ; Tompkins, W.J. ; Xue, Q.

The application of a multilayer perceptron artificial neural network model (ANN) to detect the QRS complex in ECG (electrocardiography) signal processing is presented. The objective is to improve the heart beat detection rate in the presence of severe background noise. An adaptively tuned multilayer perceptron structure is used to model the nonlinear, time-varying background noise. The noise is removed by subtracting the predicted noise from the original signal. Preliminary experimental results indicate that the ANN based approach consistently outperforms the conventional bandpass filtering approach and the linear adaptive filtering approach. Such performance enhancement is most critical toward the development of a practical automated online ECG arrhythmia monitoring system

Published in:

Neural Networks for Signal Processing [1992] II., Proceedings of the 1992 IEEE-SP Workshop

Date of Conference:

31 Aug-2 Sep 1992