By Topic

Bulk wave membrane quartz resonators fabricated by a hollow cathode RF plasma etching technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yankov, Dimitar Y. ; Inst. of Solid State Phys., Bulgarian Acad. of Sci., Sofia, Bulgaria ; Schreiter, S.

A hollow cathode maskless plasma etching method for fabrication of thin quartz membranes is presented. A special geometric arrangement of electrodes and substrates allows the complete plasma structure (plasma sheath, bulk plasma) to be transferred to the substrate area during the etching process. The process has successfully been used in preparing thin quartz membranes with plane-convex and plane-parallel shape, and thicknesses of less than 5 mu m. Vibration modes in these thin quartz membranes are calculated using the method of equivalent resonant radius. The membranes are used for realization of bulk acoustic wave resonators at fundamental frequencies above 60 MHz. Good agreement between theoretical and experimental characteristics is achieved.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:40 ,  Issue: 4 )