By Topic

A phase aberration correction method for ultrasound imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karaman, Mustafa ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Atalar, A. ; Koymen, H. ; O'Donnell, M.

A computationally efficient method for phase aberration correction in ultrasound imaging is presented. The method is based on time delay estimation via minimization of the sum of absolute differences between radio frequency samples of adjacent array elements. Effects of averaging estimated aberration patterns over scan angle and truncation to a single bit wordlength are examined. Phase distortions due to near-field inhomogeneities are simulated using silicone rubber aberrators. Performance of the method is tested using experimental data. Simulation studies addressing different factors affecting efficiency of the method, such as the number of iterations, window length, and the number of scan angles used for averaging, are presented. Images of a standard resolution phantom are reconstructed and used for qualitative testing.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:40 ,  Issue: 4 )