By Topic

Spatial reasoning for the automatic recognition of machinable features in solid models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vandenbrande, J.H. ; Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Requicha, Aristides A.G.

Discusses an automatic feature recognizer that decomposes the total volume to be machined into volumetric features that satisfy stringent conditions for manufacturability, and correspond to operations typically performed in 3-axis machining centers. Unlike most of the previous research, the approach is based on general techniques for dealing with features with intersecting volumes. Feature interactions are represented explicitly in the recognizer's output, to facilitate spatial reasoning in subsequent planning stages. A generate-and-test strategy is used. OPS-5 production rules generate hints or clues for the existence of features, and post them on a blackboard. The clues are assessed, and those judged promising are processed to ensure that they correspond to actual features, and to gather information for process planning. Computational geometry techniques are used to produce the largest volumetric feature compatible with the available data. The feature's accessibility, and its interactions with others are analyzed. The validity tests ensure that the proposed features are accessible, do not intrude into the desired part, and satisfy other machinability conditions. The process continues until it produces a complete decomposition of the volume to be machined into fully-specified features

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 12 )