By Topic

Multimodal estimation of discontinuous optical flow using Markov random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Heitz ; IRISA, Rennes, France ; P. Bouthemy

The estimation of dense velocity fields from image sequences is basically an ill-posed problem, primarily because the data only partially constrain the solution. It is rendered especially difficult by the presence of motion boundaries and occlusion regions which are not taken into account by standard regularization approaches. In this paper, the authors present a multimodal approach to the problem of motion estimation in which the computation of visual motion is based on several complementary constraints. It is shown that multiple constraints can provide more accurate flow estimation in a wide range of circumstances. The theoretical framework relies on Bayesian estimation associated with global statistical models, namely, Markov random fields. The constraints introduced here aim to address the following issues: optical flow estimation while preserving motion boundaries, processing of occlusion regions, fusion between gradient and feature-based motion constraint equations. Deterministic relaxation algorithms are used to merge information and to provide a solution to the maximum a posteriori estimation of the unknown dense motion field. The algorithm is well suited to a multiresolution implementation which brings an appreciable speed-up as well as a significant improvement of estimation when large displacements are present in the scene. Experiments on synthetic and real world image sequences are reported

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 12 )